Vor der Buchung beachten:

Bitte beachten Sie vor Ihrer Kursanmeldung unsere Allgemeine Teilnahmebedingungen (pdf, 38 KB) insbesondere aber unser Fairplay: An- und Abmelden (pdf, 299 KB).. Vielen Dank!

Hier finden Sie Antworten zu häufig gestellten Fragen.

Zum Abmelden von Kursen gehen Sie bitte auf Ihre Teilnehmenden-Homepage .



Python - Data Analysis and Data Visualization

The aim of the course is to enable participants to use Python for basic techniques of data analysis. On five evenings, two sets of data are examined more closely.

At the beginning of the course the students learn how to deal with raw data sets. Subsequently, the learned techniques are used on a real data set from Amazon. The focus is on the preparation and visualization of the data.

  • Data import and processing (familiarization with common file formats, data parsing, use of suitable data structures)
  • Aggregate (general evaluation of data, descriptive statistics, text analysis)
  • Visualization forms(table, x, y plot, normal distribution, cube diagram, spider diagram, wordcluster, histogram, 3D plot)


This course is designed for participants who have already written their own small programs. You should have no trouble writing simple if blocks, loops and functions. According to our experience, attending the Python Basic Course is usually not sufficient without further study of Python. We recommend to visit also our course "APPF - Python - Data Analysis Essentials" first. For self-assessment, the enclosed Python source code on this page may help. The code should be understood after 10 minutes at the latest.


Students, faculty and staff of the University of Zurich.


application/octet-stream 1 KB play_craps.py


Kurs APYD 1
Freie Plätze:0
Dauer:5 Tag(e) / 15 Stunde(n)
Kursleitende:David Pinezich
Teilnehmerzahl:Min: 7
Max: 20
Ort:Mac-Schulungsraum der Zentralen Informatik, Winterthurerstr. 190, Zürich (Irchel Campus: Gebäude/Building: Y10, unterhalb Dekanat MNF)
Montag, 13. Januar 202018:00 - 21:00
Dienstag, 14. Januar 202018:00 - 21:00
Donnerstag, 16. Januar 202018:00 - 21:00
Montag, 20. Januar 202018:00 - 21:00
Dienstag, 21. Januar 202018:00 - 21:00
Veranstaltungs-Infos als ICS Feed