Vor der Buchung beachten:

Bitte beachten Sie vor Ihrer Kursanmeldung unsere Allgemeine Teilnahmebedingungen (pdf, 92 KB) insbesondere aber unser Fairplay: An- und Abmelden (pdf, 299 KB).. Vielen Dank!


Covid-19 Schutzkonzept

Basisschutzkonzept der UZH

FAQ

Hier finden Sie Antworten zu häufig gestellten Fragen.


Zum Abmelden von Kursen gehen Sie bitte auf Ihre Teilnehmenden-Homepage .



Kontakt:

E-Mail: training@zi.uzh.ch

Kontaktdetails


Wartungsarbeiten am 4.10.2022

Am 4.10. wird die Kursdatenbank migriert.

Eine Anmeldung zu den Kursen ist an diesem Tag auf der Webseite nicht möglich.
Sie können sich weiterhin von ihren Kursen auf Ihrer Teilnehmenden Homepage abmelden.
Wenn Sie sich zu einem Kurs anmelden möchten oder wenn Sie Fragen haben, melden Sie sich bitte an training@zi.uzh.ch

Vielen Dank für Ihr Verständnis.

Maintenance work on 4.10.2022

On 4.10. the course database will be migrated.

It will not be possible to register for courses on the website on this day.
You can still deregister from your courses on your participant homepage
If you would like to register for a course or if you have any questions, please contact training@zi.uzh.ch.

Thank you for your understanding.

Introduction to Text Analytics with Python

As a universal programming language Python is used in a huge variety of application domains and is often used in data analysis tasks. For the analysis of textual data and especially in the interdisciplinary field of Natural Language Processing (NLP), Python is a very powerful tool.

NLP lies at the intersection of computational linguistics and artificial intelligence. It is an increasingly used domain as NLP enables computers to understand human languages and retrieve meaning from their analysis. Applications of NLP can be found in Machine Translation, Sentiment Analysis, Chatbots, Intelligent Systems, Spell Checking, Predictive Typing, Grammar correction etc.

In this introductory course, students will explore the basics of text analytics and NLP with the powerful Python package Natural Language Toolkit (NLTK) and in parts with scikit-learn. The course content is disseminated over 9 hours through slides, live coding of the instructor and in-class exercises in individual & pair work.

Learning Objectives
By the end of the introductory course, students will be able to
  • work with different file types in Python.
  • apply text pre-processing techniques for cleaning and preparing textual data.
  • extract information from textual data.
  • perform semantic and sentiment analysis.

Learning Contents
  • Writing and running Python in iPython/Anaconda
  • Tokenization
  • NLTK corpora
  • Noise removal (digits, hyperlinks, contractions, punctuation marks, special characters, emoticons, whitespaces, spelling errors)
  • Text Normalization (stop words, lower case, stemming, lemmatization)
  • Information extraction (POS tagging, chunking, n-grams, named entities)
  • TF-IDF (with scikit-learn)
  • Semantic and sentiment analysis (lexical relations, synsets, semantic similarity)

Voraussetzungen

It is necessary to attend "APPB – Python Basics". You should feel comfortable working with control structures, simple functions, and different data types in Python.

Teilnehmende

This introductory course is directed for beginners and is suitable for anyone who wishes to analyze text in Python and gain a basic understanding of Natural Language Processing (NLP).

Durchführung

Kurs APPT 2
Freie Plätze:14
Dauer:3 Tag(e) / 9 Stunde(n)
Kursleitende:Maria Tsilimos
Teilnehmerzahl:Min: 7
Max: 25
Ort:Anmeldung auf der Kollaborationsplattform Teams mit Ihrem UZH Account. Im Team "ZI - IT Fort- und Weiterbildungen" finden sie den Kanal Y01-F-49, ihren virtuellen Kursraum für diesen Kurs.
Y01-F-49 (on Teams)
Datum/Zeit:
Dienstag, 10. Januar 202309:00 - 12:00
Dienstag, 17. Januar 202309:00 - 12:00
Dienstag, 24. Januar 202309:00 - 12:00
Veranstaltungs-Infos als ICS Feed